Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77.658
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8406, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600150

RESUMO

The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.


Assuntos
Nanocompostos , Petróleo , Poluentes Químicos da Água , Emulsões , RNA Ribossômico 16S , Termodinâmica , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
2.
Environ Monit Assess ; 196(5): 478, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664274

RESUMO

The management of invasive weeds on both arable and non-arable land is a vast challenge. Converting these invasive weeds into biochar and using them to control the fate of herbicides in soil could be an effective strategy within the concept of turning waste into a wealth product. In this study, the fate of imazethapyr (IMZ), a commonly used herbicide in various crops, was investigated by introducing such weeds as biochar, i.e., Parthenium hysterophorus (PB) and Lantana camara (LB) in sandy loam soil. In terms of kinetics, the pseudo-second order (PSO) model provided the best fit for both biochar-mixed soils. More IMZ was sorbed onto LB-mixed soil compared to PB-mixed soil. When compared to the control (no biochar), both PB and LB biochars (at concentrations of 0.2% and 0.5%) increased IMZ adsorption, although the extent of this effect varied depending on the dosage and type of biochar. The Freundlich adsorption isotherm provided a satisfactory explanation for IMZ adsorption in soil/soil mixed with biochar, with the adsorption process exhibiting high nonlinearity. The values of Gibb's free energy change (ΔG) were negative for both adsorption and desorption in soil/soil mixed with biochar, indicating that sorption was exothermic and spontaneous. Both types of biochar significantly affect IMZ dissipation, with higher degradation observed in LB-amended soil compared to PB-amended soil. Hence, the findings suggest that the preparation of biochar from invasive weeds and its utilization for managing the fate of herbicides can effectively reduce the residual toxicity of IMZ in treated agroecosystems in tropical and subtropical regions.


Assuntos
Carvão Vegetal , Herbicidas , Ácidos Nicotínicos , Plantas Daninhas , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/análise , Herbicidas/análise , Herbicidas/química , Solo/química , Adsorção , Ácidos Nicotínicos/química , Lantana/química , Espécies Introduzidas , Cinética , Asteraceae/química
3.
ACS Sens ; 9(4): 1938-1944, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591496

RESUMO

The adsorption of oxygen and its reaction with target gases are the basis of the gas detection mechanism by using metal oxides. Here, we present a theoretical analysis of the sensor response, within the ionosorption model, for an n-type polycrystalline semiconductor. Our goal of our work is to reveal the mechanisms of gas sensing from a fundamental point of view. We revisit the existing models in which the sensor response presents a power-law behavior with a reducing gas partial pressure. Then, we show, based on the Wolkenstein theory of chemisorption, that the sensor response depends not only on the reducing gas partial pressure but also on the oxygen partial pressure. We also find that the obtained sensor response does not explicitly depend on the grain size, and if it does, it is exclusively through the rate constants related to the involved reactions.


Assuntos
Gases , Óxidos , Oxigênio , Oxigênio/química , Óxidos/química , Gases/química , Semicondutores , Pressão , Metais/química , Adsorção , Oxirredução
4.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604056

RESUMO

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Assuntos
Brassica , Dimetoato , Limite de Detecção , Polímeros Molecularmente Impressos , Dimetoato/análise , Brassica/química , Polímeros Molecularmente Impressos/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Nanopartículas de Magnetita/química , Extração em Fase Sólida/métodos , Contaminação de Alimentos/análise
5.
J Chromatogr A ; 1722: 464869, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604057

RESUMO

Hydrodynamics, efficiency, and loading capacity of two semi-packed columns with different cross sections (NANO 315 µm x 18 µm; CAP 1000 µm x 28 µm) and similar pillar diameter and pillar-pillar distance (respectively 5 µm and 2.5 µm) have been compared in high-pressure gas chromatography. A flow prediction tool has been first designed to determine pressure variations and hold-up time across the chromatographic system taking into account the rectangular geometry of the ducts into the semi-packed columns. Intrinsic values of Height Equivalent to Theoretical Plate were determined for NANO and CAP columns using helium as carrier gas and similar values have been obtained (30 µm) for the two columns. Loading capacity of semi-packed columns were determined for decane at 70 °C using helium, and the highest value was obtained from CAP column (larger cross section and stationary phase content). Finally, significant HETP improvement (down to 15 µm) and peak shape were observed when carbon dioxide was used as carrier gas, suggesting mobile phase adsorption on stationary phase in high pressure conditions.


Assuntos
Hélio , Pressão , Cromatografia Gasosa/métodos , Cromatografia Gasosa/instrumentação , Hélio/química , Hidrodinâmica , Dióxido de Carbono/química , Adsorção
6.
J Chromatogr A ; 1722: 464891, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608368

RESUMO

Particle size is a critical parameter of chromatographic resins that significantly affects protein separation. In this study, effects of resin particle sizes (31.26 µm, 59.85 µm and 85.22 µm named Aga-31, Aga-60 and Aga-85, respectively) on antibody adsorption capacity and separation performance of a hybrid biomimetic ligand were evaluated. Their performance was investigated through static adsorption and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC). The static adsorption results revealed that the Qmax for hIgG was 152 mg/g resin with Aga-31, 151 mg/g resin with Aga-60, and 125 mg/g resin with Aga-85. Moreover, the DBC at 10% breakthrough for hIgG with a residence time of 2 min was determined to be 49.4 mg/mL for Aga-31, 45.9 mg/mL for Aga-60, and 38.9 mg/mL for Aga-85. The resins with smaller particle sizes exhibited significantly higher capacity compared to typical commercial agarose resins and a Protein A resin (MabSelect SuRe). Furthermore, the Aga-31 resin with the hybrid biomimetic ligand demonstrated exceptional performance in terms of IgG purity (>98%) and recovery (>96%) after undergoing 20 separation cycles from CHO cell supernatant. These findings are helpful in further chromatographic resin design for the industrial application of antibody separation and purification.


Assuntos
Imunoglobulina G , Tamanho da Partícula , Adsorção , Ligantes , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Cromatografia de Afinidade/métodos , Materiais Biomiméticos/química , Animais , Biomimética/métodos , Cricetulus , Células CHO
7.
J Chromatogr A ; 1722: 464892, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608369

RESUMO

In this study, 3D-printing based on fused-deposition modeling (FDM) was employed as simple and cost-effective strategy to fabricate a novel format of rotating-disk sorptive devices. As proof-of-concept, twenty organochlorine and organophosphorus pesticides were determined in water samples through rotating-disk sorptive extraction (RDSE) using honeycomb-like 3D-printed disks followed by gas chromatography coupled to mass spectrometry (GC-MS). The devices that exhibited the best performance were comprised of polyamide + 15 % carbon fiber (PA + 15 % C) with the morphology being evaluated through X-ray microtomography. The optimized extraction conditions consisted of 120 min of extraction using 20 mL of sample at stirring speed of 1100 rpm. Additionally, liquid desorption using 800 µL of acetonitrile for 25 min at stirring speed of 1100 rpm provided the best response. Importantly, the methodology also exhibited high throughput since an extraction/desorption platform that permitted up to fifteen simultaneous extractions was employed. The method was validated, providing coefficients of determination higher than 0.9706 for all analytes; limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.15 to 3.03 µg L-1 and from 0.5 to 10.0 µg L-1, respectively. Intraday precision ranged from 4.01 to 18.73 %, and interday precision varied from 4.83 to 20.00 %. Accuracy was examined through relative recoveries and ranged from 73.29 to 121.51 %. This method was successfully applied to analyze nine groundwater samples from monitoring wells of gas stations in São Paulo. Moreover, the greenness was assessed through AGREEprep metrics, and an overall score of 0.69 was obtained indicating that the method proposed can be considered sustainable.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados , Limite de Detecção , Compostos Organofosforados , Praguicidas , Impressão Tridimensional , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Compostos Organofosforados/análise , Compostos Organofosforados/isolamento & purificação , Praguicidas/análise , Praguicidas/isolamento & purificação , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adsorção
8.
J Chromatogr A ; 1722: 464884, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615558

RESUMO

The removal of excess bilirubin from blood is of great clinical importance. Reduced graphene oxide (rGO) is often used to efficiently remove bilirubin. However, thin rGO pieces tend to aggregate in the aqueous phase because they are hydrophobic. In this context, we propose an effective strategy based on the chitosan-assisted (CS-assisted) dispersion of rGO to produce high-performance bilirubin-adsorbing microspheres. CS possesses a hydrophobic CH structure, which offers strong hydrophobic interactions with rGO that assist its dispersion, and the large number of hydrophilic sites of CS increases the hydrophilicity of rGO. CS serves as a dispersant in a surfactant-like manner to achieve a homogeneous and stable CS/rGO dispersion by simply and gently stirring CS and rGO in a LiOH/KOH/urea/H2O system. Subsequently, CS/rGO hybrid microspheres were prepared by emulsification. CS ensures blood compatibility as a base material, and the entrapped rGO contributes to mechanical strength and a high adsorption capacity. The CS/rGO microspheres exhibited a high bilirubin adsorption capacity (215.56 mg/g), which is significantly higher than those of the rGO and CS microspheres. The determined mass-transfer factors revealed that the rich pores of the CS/rGO microspheres promote mass transfer during bilirubin adsorption (equilibrium is almost achieved within 30 min). The CS/rGO microspheres are promising candidates for bilirubin removal owing to a combination of high strength, blood compatibility, and high adsorption capacity.


Assuntos
Bilirrubina , Quitosana , Grafite , Interações Hidrofóbicas e Hidrofílicas , Microesferas , Grafite/química , Quitosana/química , Bilirrubina/química , Bilirrubina/isolamento & purificação , Bilirrubina/sangue , Adsorção , Humanos
9.
J Chromatogr A ; 1722: 464899, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626542

RESUMO

Perfluoroalkyl substances (PFAS) are persistent organic pollutants that pose significant risks to human health and the environment. Efficient and selective enrichment of these compounds was crucial for their accurate detection and quantification in complex matrices. Herein, we report a novel magnetic solid-phase extraction (MSPE) method using fluorine-functionalized magnetic amino-microporous organic network (Fe3O4@MONNH2@F7) adsorbent for the efficient enrichment of PFAS from aqueous samples. The core-shell Fe3O4@MONNH2@F7 nanosphere was synthesized, featuring magnetic Fe3O4 nanoparticles as the core and a porous amino-functionalized MONs coating as the shell, which was further modified by fluorination. The synthesized adsorbent material exhibited high specific surface area, hydrophobicity, and abundant fluorine groups, facilitating efficient and selective adsorption of PFAS via electrostatic attraction, hydrophobic-hydrophobic interactions, fluorine-fluorine interactions, π-CF interactions and hydrogen bonding. Furthermore, the MSPE method coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allowed for the rapid, sensitive, and accurate determination of ultra-trace PFAS in real water samples, human serum, and human follicular fluid. Under optimal conditions, the established MSPE method demonstrated a linear range (2 to 2000 ng L-1), with a correlation coefficient exceeding 0.9977, low limits of detection ranging from 0.54 to 1.47 ng L-1, with a relative standard deviation (RSD) < 9.1%. Additionally, the method showed excellent performance in complex real samples (recovery ratio of 81.7 to 121.6 %). The adsorption mechanism was investigated through kinetic, isotherm, and molecular simulation studies, revealing that the introduction of fluorine groups enhanced the hydrophobic interaction and fluorine-fluorine attraction between the adsorbent and PFAS. This work provides a proof-of-concept strategy for designing adsorbent materials with high efficiency and selectivity by post-modification, which has great potential for the detection and analysis of PFAS in complex samples.


Assuntos
Flúor , Fluorocarbonos , Nanopartículas de Magnetita , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Fluorocarbonos/química , Fluorocarbonos/análise , Fluorocarbonos/isolamento & purificação , Flúor/química , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Porosidade , Nanopartículas de Magnetita/química , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção
10.
J Chromatogr A ; 1722: 464902, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636150

RESUMO

Although immobilized metal ion affinity chromatography (IMAC) is one of the most effective methods for purifying his-tagged proteins, it has limitations such as expensive commercial resins and non-specific binding of unwanted proteins to the nickel immobilized on the resin. In this study, biocompatible chitosan and porous chitosan membranes as alternative resins were synthesized for protein immobilization and purification, but finally porous chitosan membrane was selected due to its higher porosity and consequently higher nickel adsorption. Once the membrane was functionalized with nickel ions and its metal adsorption confirmed by EDS and ICP methods, it was used to immobilize and purify recombinant ß-NGF as a protein model with his-tag tail in batch-fashion. Protein binding and purification were also approved by FTIR and UV-Vis spectroscopy and SDS-PAGE technique. Our results indicated that the protein of interest could bind to the nickel-functionalized porous chitosan membrane with high efficiency at pH=7. Furthermore, for protein purification, the pH value of 6 and an imidazole concentration of 750 mM were suggested for the final elution buffer. In conclusion, nickel-functionalized porous chitosan membrane could be a suitable alternative to IMAC for low cost and specific protein immobilization and purification.


Assuntos
Quitosana , Cromatografia de Afinidade , Histidina , Membranas Artificiais , Níquel , Níquel/química , Quitosana/química , Cromatografia de Afinidade/métodos , Histidina/química , Porosidade , Adsorção , Proteínas Imobilizadas/química , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
11.
Sci Rep ; 14(1): 9168, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649777

RESUMO

Fluorinated graphene, a two-dimensional nanomaterial composed of three atomic layers, a central carbon layer sandwiched between two layers of fluorine atoms, has attracted considerable attention across various fields, particularly for its potential use in biomedical applications. Nonetheless, scant effort has been devoted to assessing the potential toxicological implications of this nanomaterial. In this study, we scrutinize the potential impact of fluorinated graphene on a protein model, HP35 by utilizing extensive molecular dynamics (MD) simulation methods. Our MD results elucidate that upon adsorption to the nanomaterial, HP35 undergoes a denaturation process initiated by the unraveling of the second helix of the protein and the loss of the proteins hydrophobic core. In detail, substantial alterations in various structural features of HP35 ensue, including alterations in hydrogen bonding, Q value, and RMSD. Subsequent analyses underscore that hydrophobic and van der Waals interactions (predominant), alongside electrostatic energy (subordinate), exert influence over the adsorption of HP35 on the fluorinated graphene surface. Mechanistic scrutiny attests that the unrestrained lateral mobility of HP35 on the fluorinated graphene nanomaterial primarily causes the exposure of HP35's hydrophobic core, resulting in the eventual structural denaturation of HP35. A trend in the features of 2D nanostructures is proposed that may facilitate the denaturation process. Our findings not only substantiate the potential toxicity of fluorinated graphene but also unveil the underlying molecular mechanism, which thereby holds significance for the prospective utilization of such nanomaterials in the field of biomedicine.


Assuntos
Grafite , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Proteínas de Neurofilamentos , Fragmentos de Peptídeos , Conformação Proteica em alfa-Hélice , Grafite/química , Grafite/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Desdobramento de Proteína/efeitos dos fármacos , Halogenação , Adsorção , Nanoestruturas/química , Nanoestruturas/toxicidade
12.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667159

RESUMO

The screen-printed carbon electrode (SPCE) is a useful technology that has been widely used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and simple electrode design. Compared with gold or platinum electrodes, surface modification is difficult because the carbon surface is chemically or physically stable. Oxygen plasma (O2) can easily produce carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds. However, the effect of O2-plasma treatment on electrode performance remains to be investigated from an electrochemical perspective, and sensor performance can be improved by clarifying the surface conditions of plasma-treated biosensors. In this research, we compared antibody modification by plasma treatment and physical adsorption, using our novel immunosensor based on gold nanoparticles (AuNPs). Consequently, the O2-plasma treatment produced carboxyl groups on the electrode surface that changed the electrochemical properties owing to electrostatic interactions. In this study, we compared the following four cases of SPCE modification: O2-plasma-treated electrode/covalent-bonded antibody (a); O2-plasma-treated electrode/physical adsorbed antibody (b); bare electrode/covalent-bonded antibody (c); and bare electrode/physical absorbed antibody (d). The limits of detection (LOD) were 0.50 ng/mL (a), 9.7 ng/mL (b), 0.54 ng/mL (c), and 1.2 ng/mL (d). The slopes of the linear response range were 0.039, 0.029, 0.014, and 0.022. The LOD of (a) was 2.4 times higher than the conventional condition (d), The slope of (a) showed higher sensitivity than other cases (b~d). This is because the plasma treatment generated many carboxyl groups and increased the number of antibody adsorption sites. In summary, the O2-plasma treatment was found to modify the electrode surface conditions and improve the amount of antibody modifications. In the future, O2-plasma treatment could be used as a simple method for modifying various molecular recognition elements on printed carbon electrodes.


Assuntos
Técnicas Biossensoriais , Carbono , Eletrodos , Ouro , Oxigênio , Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Propriedades de Superfície , Limite de Detecção , Técnicas Eletroquímicas , Adsorção
13.
Toxins (Basel) ; 16(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38668625

RESUMO

Okadaic acid (OA) is one of the most potent marine biotoxins, causing diarrheal shellfish poisoning (DSP). The proliferation of microalgae that produce OA and its analogues is frequent, threatening human health and socioeconomic development. Several methods have been tested to remove this biotoxin from aquatic systems, yet none has proven enough efficacy to solve the problem. In this work, we synthesized and characterized low-cost composites and tested their efficacy for OA adsorption in saltwater. For the synthesis of the composites, the following starting materials were considered: chitosan of low and medium molecular weight (CH-LW and CH-MW, respectively), activated carbon (AC), and montmorillonite (MMT). Characterization by vibrational spectroscopy (FTIR), X-ray diffraction (XRD), and microscopy revealed differences in the mode of interaction of CH-LW and CH-MW with AC and MMT, suggesting that the interaction of CH-MW with MMT has mainly occurred on the surface of the clay particles and no sufficient intercalation of CH-MW into the MMT interlayers took place. Among the composites tested (CH-LW/AC, CH-MW/AC, CH-MW/AC/MMT, and CH-MW/MMT), CH-MW/MMT was the one that revealed lower OA adsorption efficiency, given the findings evidenced by the structural characterization. On the contrary, the CH-MW/AC composite revealed the highest average percentage of OA adsorption (53 ± 11%). Although preliminary, the results obtained in this work open up good perspectives for the use of this type of composite material as an adsorbent in the removal of OA from marine environments.


Assuntos
Bentonita , Quitosana , Ácido Okadáico , Adsorção , Quitosana/química , Ácido Okadáico/química , Bentonita/química , Carvão Vegetal/química , Toxinas Marinhas/química , Intoxicação por Frutos do Mar/prevenção & controle
14.
ACS Sens ; 9(4): 1906-1915, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38565844

RESUMO

As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/µg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.


Assuntos
Benzeno , Cobre , Limite de Detecção , Estruturas Metalorgânicas , Termodinâmica , Benzeno/análise , Benzeno/química , Cobre/química , Estruturas Metalorgânicas/química , Adsorção , Cinética , Teoria da Densidade Funcional , Gases/análise , Gases/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-38573823

RESUMO

Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.


Assuntos
Escherichia coli , Lítio , Porinas , Escherichia coli/genética , Escherichia coli/metabolismo , Adsorção , Resíduos Industriais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Águas Residuárias/microbiologia , Fontes de Energia Elétrica , Técnicas de Visualização da Superfície Celular , Proteínas Recombinantes/genética
16.
Environ Monit Assess ; 196(5): 461, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642157

RESUMO

Heavy metal pollution is an enduring environmental challenge that calls for sustainable and eco-friendly solutions. One promising approach is to harness discarded plant biomass as a highly efficient environmental friendly adsorbents. In this context, a noteworthy study has spotlighted the employment of Euryale ferox Salisbury seed coat (E.feroxSC) for the exclusion of trivalent and hexavalent chromium ions. This study aims to transform discarded plant residue into a novel, environmentally friendly, and cost-effective alternative adsorbent, offering a compelling alternative to more expensive adsorption methods. By repurposing natural materials, we can contribute to mitigating heavy-metal pollution while promoting sustainable and economically viable solutions in environmental remediation. The effect of different parameters, i.e., chromium ions' initial concentration (5-25 mg L-1), solution pH (2-7), adsorbent dosage (0.2-2.4 g L-1), contact time (20-240 min), and temperature (298-313 K), were investigated. E.feroxSC proved highly effective, achieving 96.5% removal of Cr(III) ions at pH 6 and 97.7% removal of Cr(VI) ions at pH 2, with a maximum biosorption capacity of 18.33 mg/g for Cr(III) and 13.64 mg/g for Cr(VI), making it a promising, eco-friendly adsorbent for tackling heavy-metal pollution. The adsorption process followed the pseudo-second-order kinetic model, aligning well with the Langmuir isotherm, exhibited favorable thermodynamics, and was characterized as feasible, spontaneous, and endothermic with physisorption mechanisms. The investigation revealed that E.feroxSC effectively adsorbed Cr(VI) which could be rejuvenated in a basic solution with minimal depletion in its adsorption capacity. Conversely, E.feroxSC's adsorption of Cr(III) demanded rejuvenation in an acidic milieu, exhibiting comparatively less efficient restoration.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Monitoramento Ambiental , Cromo/análise , Água , Termodinâmica , Cinética , Adsorção
17.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1540-1548, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621937

RESUMO

This study aims to reveal the effects of maltodextrin(MD) on the water adsorption and thermodynamic properties of Codonopsis Radix(DS) spray-dried powder by determining the moisture and energy changes of the powder in the process of moisture absorption. The static weighing method was used to obtain the isothermal water adsorption data of the spray-dried powder in 6 saturated salt solutions(KAc, MgCl_2·6H_2O, K_2CO_3, NaBr, NaCl, and KCl) at 3 temperatures(25, 35, and 45 ℃). Six models were used for fitting of the water adsorption process, and the most suitable model was selected based on the model performance. Furthermore, the corresponding net equivalent adsorption heat and differential entropy were calculated, and the adsorption entropy change was integrated. The linear relationship between net equivalent adsorption heat and differential entropy was drawn based on the entropy-enthalpy complementarity theory. The results showed that the water adsorption properties of DS and DS-MD spray-dried powder followed the type Ⅲ isotherm and was well fitted by the GAB model. The monolayer water content M_0 decreased with the increase in temperature. At the same temperature, the M_0 of DS spray-dried powder decreased after the addition of MD. The net equivalent adsorption heat and differential entropy of DS and DS-MD spray-dried powder decreased with the increase in water content, which presented a linear relationship. The addition of MD decreased the water activity corresponding to the lowest integral adsorption entropy of the powder, and the system became more stable. The results indicated that the spray-dried powder became more stable after the addition of MD.


Assuntos
Codonopsis , Polissacarídeos , Água , Adsorção , Pós , Termodinâmica
18.
PLoS One ; 19(4): e0301986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626158

RESUMO

The production of sludge-based biochar to recover phosphorus (P) from wastewater and reuse the recovered phosphorus as agricultural fertilizer is a preferred process. This article mainly studied the removal of phosphate (PO4-P) from aqueous solution by synthesizing sludge-based biochar (MgSBC-0.1) from anaerobic fermentation sludge treated with magnesium (Mg)-loading-modification, and compared it with unmodified sludge-based biochar (SBC). The physicochemical properties, adsorption efficiency, and adsorption mechanism of MgSBC-0.1 were studied. The results showed that the surface area of MgSBC-0.1 synthesized increased by 5.57 times. The material surface contained MgO, Mg(OH)2, and CaO nanoparticles. MgSBC-0.1 can effectively remove phosphate in the initial solution pH range of 3.00-7.00, with a fitted maximum phosphorus adsorption capacity of 379.52 mg·g-1. The adsorption conforms to the pseudo second-order kinetics model and Langmuir isotherm adsorption curve. The characterization of the adsorbed composite material revealed the contribution of phosphorus crystal deposition and electrostatic attraction to phosphorus absorption.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Magnésio , Esgotos , Adsorção , Carvão Vegetal , Fósforo/química , Cinética , Poluentes Químicos da Água/análise
19.
Water Environ Res ; 96(4): e11020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38636954

RESUMO

Antiretroviral drugs (ARVDs) have been extensively employed in health care to improve the quality of life and lifecycle longevity. However, overuse and improper disposal of ARVDs have been recognized as an emerging concern whereby wastewater treatment major recipients. Therefore, in this work, the activated macadamia nutshells (MCNs) were explored as low-cost adsorbents for the removal of ARVDs in wastewater samples. Fourier transform infrared spectroscopy (FTIR), Scanning Electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and Powder X-ray diffraction (PXRD). The highest removal efficiency (R.E) was above 86% for the selected analytes nevirapine, abacavir, and efavirenz. The maximum adsorption capacity of the functionalized MCN adsorbent was 10.79, 27.44, and 38.17 mg/g for nevirapine, abacavir, and efavirenz for HCl-modified adsorbent. In contrast, NaOH modified had adsorption capacities of 13.67, 14.25, and 20.79 mg/g. The FTIR showed distinct functional groups OH and CO, which facilitate the removal of selected ARVDs. From studying kinetics parameters, the pseudo-second-order (R2 = 0.990-0.996) was more dominant than the pseudo-first-order (R2 = 0.872-0.994). The experimental data was most fitted in the Freundlich model with (R2 close to 1). The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The study indicated that MCNs are an eco-friendly, low-cost, and effective adsorbent for the removal of nevirapine, abacavir, and efavirenz. PRACTITIONER POINTS: Modification macadamia nutshell with HCl and NaOH improved physio-chemical properties that yielded high removal efficiency compared with raw macadamia nutshells. Modification of macadamia by HCl showed high removal efficiency, which could be attributed to high interaction such as H-bonding that improves adsorption. The macadamia nutshell as an adsorbent showed so much robustness with regeneration studies yielding to about 69.64% of selected compounds.


Assuntos
Alcinos , Benzoxazinas , Ciclopropanos , Didesoxiadenosina/análogos & derivados , Infecções por HIV , Poluentes Químicos da Água , Águas Residuárias , Macadamia , Adsorção , Nevirapina , Qualidade de Vida , Hidróxido de Sódio , Termodinâmica , Cinética , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
20.
Chemosphere ; 355: 141891, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575086

RESUMO

Mercury pollution poses a global health threat due to its high toxicity, especially in seafood where it accumulates through various pathways. Developing effective and affordable technologies for mercury removal from water is crucial. Adsorption stands out as a promising method, but creating low-cost materials with high selectivity and capacity for mercury adsorption is challenging. Here we show a sustainable method to synthesize low-cost sulfhydrylated cellulose with ethylene sulfide functionalities bonded glucose units. Thiol-functionalized cellulose exhibits exceptional adsorption capacity (1325 mg g-1) and selectivity for Hg(II) over other heavy metals (Co, Cu, Zn, Pb) and common cations (Ca++, Mg++) found in natural waters. It performs efficiently across a wide pH range and different aqueous matrices, including wastewater, and can be regenerated and reused multiple times without significant loss of performance. This approach offers a promising solution for addressing mercury contamination in water sources.


Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Água/química , Celulose/química , Compostos de Sulfidrila , Adsorção , Poluentes Químicos da Água/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA